Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Sophie Beaudoin,* Davit Zargarian, Francine BélangerGariépy and Frédéric-Georges Fontaine

Département de Chimie, Université de Montréal, CP 6128, Succ. Centre-ville, Montréal, Québec, Canada H3C 3J7

Correspondence e-mail: fontaifr@yahoo.ca

Key indicators

Single-crystal X-ray study
$T=220 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.007 \AA$
R factor $=0.052$
$w R$ factor $=0.138$
Data-to-parameter ratio $=16.6$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2001 International Union of Crystallography Printed in Great Britain - all rights reserved

[1,2-Bis(diphenylphosphino)ethane]dibromonickel(II) tetrahydrofuran solvate

The title complex, $\left[\mathrm{Ni}(\mathrm{dppe}) \mathrm{Br}_{2}\right]$.THF, where dppe is bis(diphenylphosphino) ethane $\left(\mathrm{C}_{26} \mathrm{H}_{24} \mathrm{P}_{2}\right)$ and THF is tetrahydrofuran $\left(\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}\right)$, consists of a square-planar Ni center coordinated by the chelating phosphine ligand and by two cis -Br atoms. One molecule of THF is included in the asymmetric unit.

Comment

In the course of our studies, the formation of $\mathrm{Ni}(\mathrm{dppe}) \mathrm{Br}_{2}$ was observed as a by-product for the reaction of $\mathrm{Ni}(\text { dppe })_{2}$ with N bromophthalimide. Even though this compound is well known as a good starting product, only the $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ adduct has been previously characterized using X-ray crystallography (Rahn et al., 1989). The structure of the THF adduct, (I) (Fig. 1), is

(I)
isostructural with the one previously reported for the $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ analog, having a slightly larger volume (about $20 \AA^{3}$), presumably because of the larger volume of THF compared to $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The THF adduct adopts a pseudo-square planar geometry with a $\mathrm{P}-\mathrm{Ni}-\mathrm{P}$ bite angle of $89.97(5)^{\circ}$ and an angle of 93.93 (4) ${ }^{\circ}$ between the Br atoms. We note that the $\mathrm{Ni}-\mathrm{P}$ bond lengths [2.1573 (14) and $2.1603(14) \AA$] are also

Figure 1
SHELXTL (Bruker, 1997) drawing of the title molecule, showing 30\% probability displacement ellipsoids and the atom-numbering scheme.
\qquad
slightly longer in the THF adduct than the corresponding distances in the $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ adduct [2.141 (1) and 2.156 (1) \AA], but both $\mathrm{Ni}-\mathrm{Br}$ bonds are very similar. In this structure, there is a stacking interaction between the THF ring and the C121C126 phenyl ring, as shown in Fig. 2.

Experimental

Using Schlenk techniques, THF (10 ml) was added to a mixture of $\mathrm{Ni}(\text { dppe })_{2}(40 \mathrm{mg}, 0.047 \mathrm{mmol})$ and N-bromophthalimide $(13 \mathrm{mg}$, 0.058 mmol) and stirred for 5 min . A large excess of hexanes was then added to the solution, resulting, after 12 h , in the formation of darkred crystals. The filtrate was removed and the solid dried under N_{2}.

Crystal data

$\left[\mathrm{NiBr}_{2}\left(\mathrm{C}_{26} \mathrm{H}_{24} \mathrm{P}_{2}\right)\right] \cdot \mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}$
$M_{r}=689.03$
Monoclinic, $P 2_{1} / c$
$a=11.709$ (5) Å
$b=14.551$ (4) \AA
$c=17.558$ (6) \AA
$\beta=107.38(3)^{\circ}$
$V=2854.9(17) \AA^{3}$
$Z=4$

$$
\begin{aligned}
& D_{x}=1.603 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \mathrm{Cu} K \alpha \text { radiation } \\
& \text { Cell parameters from } 25 \\
& \quad \text { reflections } \\
& \theta=20.0-21.0^{\circ} \\
& \mu=5.48 \mathrm{~mm}^{-1} \\
& T=220(2) \mathrm{K} \\
& \text { Block, dark red } \\
& 0.57 \times 0.15 \times 0.12 \mathrm{~mm}
\end{aligned}
$$

Data collection

Nonius CAD-4 diffractometer
$\omega / 2 \theta$ scans $\omega / 2 \theta$ scans
Absorption correction: by integration (ABSORP in NRCVAX; Gabe et al., 1989)
$T_{\text {min }}=0.234, T_{\text {max }}=0.573$
6651 measured reflections
5425 independent reflections
4582 reflections with $I>2 \sigma(I)$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.052$
$w R\left(F^{2}\right)=0.138$
$S=1.08$
5425 reflections
326 parameters
H -atom parameters constrained

$$
\begin{aligned}
& R_{\text {int }}=0.038 \\
& \theta_{\max }=70.0^{\circ} \\
& h=-14 \rightarrow 14 \\
& k=-17 \rightarrow 17 \\
& l=-21 \rightarrow 21 \\
& 5 \text { standard reflections } \\
& \quad \text { frequency: } 60 \text { min } \\
& \quad \text { intensity decay: none }
\end{aligned}
$$

$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.1052 P)^{2}\right]$ where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.001$
$\Delta \rho_{\text {max }}=1.80 \mathrm{e}^{-3}$
$\Delta \rho_{\min }=-1.12 \mathrm{e}^{-3}$
Extinction correction: SHELXL96 (Sheldrick, 1996)
Extinction coefficient: 0.00115 (13)

Table 1
Selected geometric parameters ($\AA{ }^{\circ}{ }^{\circ}$).

$\mathrm{Ni}-\mathrm{P} 2$	$2.1573(14)$	$\mathrm{Ni}-\mathrm{Br} 1$	$2.3212(12)$
$\mathrm{Ni}-\mathrm{P} 1$	$2.1603(14)$	$\mathrm{Ni}-\mathrm{Br} 2$	$2.3419(12)$
$\mathrm{P} 2-\mathrm{Ni}-\mathrm{P} 1$	$86.97(5)$	$\mathrm{P} 2-\mathrm{Ni}-\mathrm{Br} 2$	$88.92(5)$
$\mathrm{P} 2-\mathrm{Ni}-\mathrm{Br} 1$	$175.13(4)$	$\mathrm{P} 1-\mathrm{Ni}-\mathrm{Br} 2$	$175.46(4)$
$\mathrm{P} 1-\mathrm{Ni}-\mathrm{Br} 1$	$90.02(5)$	$\mathrm{Br} 1-\mathrm{Ni}-\mathrm{Br} 2$	$93.95(4)$

The space group was confirmed by the PLATON program (Spek, 1995). Data reduction was performed using a locally modified version of the NRC-2 program (Ahmed et al., 1973). The structure was solved by direct methods using SHELXS97 (Sheldrick, 1997) and difmap synthesis using SHELXTL (Bruker, 1997) and SHELXL96 (Sheldrick, 1996). H atoms were constrained to ride on the attached atoms; SHELXL 96 defaults, $\mathrm{C}-\mathrm{H}=0.94-0.98 \AA$. The isotropic displacement parameters, $U_{\text {iso }}$, were set to values 20% higher than those of the attached atoms. A final verification of possible voids was performed using the VOID routine of the PLATON program (Spek, 1995).

Figure 2
SHELXTL (Bruker, 1997) drawing of the unit-cell contents showing the interaction between THF and phenyl rings. Ellipsoids are drawn at the 30% probability level.

Data collection: CAD-4 Software (Enraf-Nonius, 1989); cell refinement: CAD-4 Software; data reduction: NRC-2 and NRC-2A (Ahmed et al., 1973); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL96 (Sheldrick, 1996); molecular graphics: SHELXTL (Bruker, 1997).

The financial support of the Natural Sciences and Engineering Research Council of Canada and from the Fonds FCAR du Ministère de l'Éducation du Québec is gratefully acknowledged.

References

Ahmed, F. R., Hall, S. R., Pippy, M. E. \& Huber, C. P. (1973). NRC Crystallographic Computer Programs for the IBM/360. Accession Nos. 133147. J. Appl. Cryst. 6, 309-346.

Bruker (1997). SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
Gabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. \& White, P. S. (1989). J. Appl. Cryst. 22, 384-387.
Rahn, J. A., Delian, A. \& Nelson, J. H. (1989). Inorg. Chem. 28, 215-217. Sheldrick, G. M. (1996). SHELXL96. University of Göttingen, Germany. Sheldrick, G. M. (1997). SHELXS97. University of Göttingen, Germany. Spek, A. L. (1995). PLATON. July 1995 Version. University of Utrecht, The Netherlands.

