Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Sophie Beaudoin,* Davit Zargarian, Francine Bélanger-Gariépy and Frédéric-Georges Fontaine

Département de Chimie, Université de Montréal, CP 6128, Succ. Centre-ville, Montréal, Québec, Canada H3C 3J7

Correspondence e-mail: fontaifr@yahoo.ca

Key indicators

Single-crystal X-ray study T = 220 KMean σ (C–C) = 0.007 Å R factor = 0.052 wR factor = 0.138 Data-to-parameter ratio = 16.6

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[1,2-Bis(diphenylphosphino)ethane]dibromonickel(II) tetrahydrofuran solvate

The title complex, $[Ni(dppe)Br_2]$ ·THF, where dppe is bis(diphenylphosphino)ethane (C₂₆H₂₄P₂) and THF is tetrahydrofuran (C₄H₈O), consists of a square-planar Ni center coordinated by the chelating phosphine ligand and by two *cis*-Br atoms. One molecule of THF is included in the asymmetric unit. Received 16 August 2001 Accepted 6 September 2001 Online 20 September 2001

Comment

In the course of our studies, the formation of Ni(dppe)Br₂ was observed as a by-product for the reaction of Ni(dppe)₂ with *N*bromophthalimide. Even though this compound is well known as a good starting product, only the CH_2Cl_2 adduct has been previously characterized using X-ray crystallography (Rahn *et al.*, 1989). The structure of the THF adduct, (I) (Fig. 1), is

isostructural with the one previously reported for the CH_2Cl_2 analog, having a slightly larger volume (about 20 Å³), presumably because of the larger volume of THF compared to CH_2Cl_2 . The THF adduct adopts a pseudo-square planar geometry with a P-Ni-P bite angle of 89.97 (5)° and an angle of 93.93 (4)° between the Br atoms. We note that the Ni-P bond lengths [2.1573 (14) and 2.1603 (14) Å] are also

Figure 1

 \odot 2001 International Union of Crystallography Printed in Great Britain – all rights reserved

SHELXTL (Bruker, 1997) drawing of the title molecule, showing 30% probability displacement ellipsoids and the atom-numbering scheme.

metal-organic papers

slightly longer in the THF adduct than the corresponding distances in the CH_2Cl_2 adduct [2.141 (1) and 2.156 (1) Å], but both Ni-Br bonds are very similar. In this structure, there is a stacking interaction between the THF ring and the C121-C126 phenyl ring, as shown in Fig. 2.

Experimental

Using Schlenk techniques, THF (10 ml) was added to a mixture of $Ni(dppe)_2$ (40 mg, 0.047 mmol) and *N*-bromophthalimide (13 mg, 0.058 mmol) and stirred for 5 min. A large excess of hexanes was then added to the solution, resulting, after 12 h, in the formation of dark-red crystals. The filtrate was removed and the solid dried under N₂.

 $D_x = 1.603 \text{ Mg m}^{-3}$

Cell parameters from 25

 $0.57\,\times\,0.15\,\times\,0.12$ mm

Cu $K\alpha$ radiation

reflections

 $\theta = 20.0-21.0^{\circ}$ $\mu = 5.48 \text{ mm}^{-1}$

T = 220 (2) K

 $R_{\rm int}=0.038$

 $\theta_{\rm max}=70.0^\circ$

 $h = -14 \rightarrow 14$

 $k = -17 \rightarrow 17$

 $l = -21 \rightarrow 21$

5 standard reflections

Block, dark red

Crystal data

$$\begin{split} & [\mathrm{NiBr}_2(\mathrm{C}_{26}\mathrm{H}_{24}\mathrm{P}_2)]\cdot\mathrm{C}_4\mathrm{H}_8\mathrm{O} \\ & M_r = 689.03 \\ & \mathrm{Monoclinic}, \ P_{2_1}/c \\ & a = 11.709 \ (5) \ \mathring{\mathrm{A}} \\ & b = 14.551 \ (4) \ \mathring{\mathrm{A}} \\ & c = 17.558 \ (6) \ \mathring{\mathrm{A}} \\ & \beta = 107.38 \ (3)^\circ \\ & V = 2854.9 \ (17) \ \mathring{\mathrm{A}}^3 \\ & Z = 4 \end{split}$$

Data collection

```
Nonius CAD-4 diffractometer

\omega/2\theta scans

Absorption correction: by integra-

tion (ABSORP in NRCVAX;

Gabe et al., 1989)

T_{min} = 0.234, T_{max} = 0.573

6651 measured reflections

5425 independent reflections

4582 reflections with I > 2\sigma(I)
```

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.052$ $wR(F^2) = 0.138$ S = 1.085425 reflections 326 parameters H-atom parameters constrained frequency: 60 min intensity decay: none $w = 1/[\sigma^2(F_o^2) + (0.1052P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\text{max}} = 0.001$

 $\begin{array}{l} (\Delta \sigma)_{\rm max} = 0.001 \\ \Delta \rho_{\rm max} = 1.80 \ {\rm e} \ {\rm \AA}^{-3} \\ \Delta \rho_{\rm min} = -1.12 \ {\rm e} \ {\rm \AA}^{-3} \\ {\rm Extinction correction: } SHELXL96 \\ ({\rm Sheldrick, 1996}) \\ {\rm Extinction coefficient: } 0.00115 \ (13) \end{array}$

Table 1

Selected geometric parameters (Å, °).

Ni-P2 Ni-P1	2.1573 (14) 2.1603 (14)	Ni-Br1 Ni-Br2	2.3212 (12) 2.3419 (12)
P2-Ni-P1	86.97 (5)	P2-Ni-Br2	88.92 (5)
P2-Ni-Br1	175.13 (4)	P1-Ni-Br2	175.46 (4)
P1-Ni-Br1	90.02 (5)	Br1-Ni-Br2	93.95 (4)

The space group was confirmed by the *PLATON* program (Spek, 1995). Data reduction was performed using a locally modified version of the *NRC*-2 program (Ahmed *et al.*, 1973). The structure was solved by direct methods using *SHELXS*97 (Sheldrick, 1997) and difmap synthesis using *SHELXTL* (Bruker, 1997) and *SHELXL*96 (Sheldrick, 1996). H atoms were constrained to ride on the attached atoms; *SHELXL*96 defaults, C-H = 0.94–0.98 Å. The isotropic displacement parameters, $U_{\rm iso}$, were set to values 20% higher than those of the attached atoms. A final verification of possible voids was performed using the *VOID* routine of the *PLATON* program (Spek, 1995).

Figure 2

SHELXTL (Bruker, 1997) drawing of the unit-cell contents showing the interaction between THF and phenyl rings. Ellipsoids are drawn at the 30% probability level.

Data collection: *CAD-4 Software* (Enraf–Nonius, 1989); cell refinement: *CAD-4 Software*; data reduction: *NRC-2* and *NRC-2A* (Ahmed *et al.*, 1973); program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL96* (Sheldrick, 1996); molecular graphics: *SHELXTL* (Bruker, 1997).

The financial support of the Natural Sciences and Engineering Research Council of Canada and from the Fonds FCAR du Ministère de l'Éducation du Québec is gratefully acknowledged.

References

Ahmed, F. R., Hall, S. R., Pippy, M. E. & Huber, C. P. (1973). NRC Crystallographic Computer Programs for the IBM/360. Accession Nos. 133– 147. J. Appl. Cryst. 6, 309–346.

Bruker (1997). SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.

Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The

Netherlands. Gabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. & White, P. S. (1989). *J. Appl. Cryst.* **22**, 384–387.

Rahn, J. A., Delian, A. & Nelson, J. H. (1989). Inorg. Chem. 28, 215–217.

Sheldrick, G. M. (1996). SHELXL96. University of Göttingen, Germany.

Sheldrick, G. M. (1997). SHELXS97. University of Göttingen, Germany.

Spek, A. L. (1995). *PLATON*. July 1995 Version. University of Utrecht, The Netherlands.